1.	The electric field intensity at point P due to point charge q kept at point Q is $24 NC^{-1}$ and the electric potential at point P due to same charge is $12JC^{-1}$. The order of magnitude of charge q is (a) $10^{-6}C$ (b) $10^{-7}C$ (c) $10^{-10}C$ (d) $10^{-9}C$	6.	Two identical balls having like charges and placed at certain distance apart repel each other with a certain force. They are brought in contact and then moved apart to a distance equal to half their initial separation. The force of repulsion between them increases 4.5 times in comparison with the initial value. The ratio of the initial charges of the balls is- (a) 2 (b) 3 (c) 4 (d) 6			
2.	A small sphere of radius r_1 and charge q_1 is enclosed by a spherical shell of radius r_2 and charge q_2 If q_1 is positive, then (a) Charge will flow from the sphere to shell. (b) Charge will flow from the shell to sphere	7. ER	When a body is connected to the earth, then electrons from the earth, flow into the body. It means that the body is- (a) Uncharged (b) An insulator (c) Positively charged (d) Negatively charged			
	(c) Charge flow will depend on the magnitude q_2 (d) Charge flow will depend on the magnitude of		(c) resultely charged			
	charge q ₁	8. Отн	In a region of constant potential. (a) The electric field is potential (b) The electric field is zero.			
3.	Metallic sphere of radius R is charged to potential V. then charge q is proportional to (a) V (b) R	(c) There can be no charge inside the region.				
	(c) Both V and R (d) None of these		(d) Both (b) and (c) are correct			
4.	In the above que., the charge on capacitors C_1 and C_4	9. e \	Two conducting spheres of radii r_1 and r_2 are equally charged. The ratio of their potential is.			
	are (a) 4×10^{-3} C, 12×10^{-3} C		(a) $\frac{r_1}{r_2}$ (b) $\frac{r_2^2}{r_1^2}$ (c) $\frac{r_2}{r_1}$ (d) $\frac{r_1^2}{r_2^2}$			
	(b) 6×10^{-3} C, 12×10^{-3} C + 91-945	4	606724			
	(c) 2×10^{-3} C, 4×10^{-3} C (d) 3×10^{-3} C, 2×10^{-3} C	10. 5-0	The potential at a point due to a charge of 5×10^{-7} C located 10 cm away is. (a) 3.5×10^5 V (b) 3.5×10^4 V			
			(c) 4.5×10^4 V (d) 4.5×10^5 V			
5.	A capacitor of $4 \ \mu$ F is connected as shown in the circuit. The internal resistance of the battery is 0.5Ω The amount of charge on the capacitor plates will be $4 \ \mu$ F 2.5 V $10 \ \Omega$ 2.5 V (a) 0 (b) $4 \ \mu$ C (c) $16 \ \mu$ C (d) $8 \ \mu$ C	11.	The electric field and the potential of an electric dipole vary with distance r as. (a) $\frac{1}{r}$ and $\frac{1}{r^2}$ (b) $\frac{1}{r^2}$ and $\frac{1}{r}$ (c) $\frac{1}{r^2}$ and $\frac{1}{r^3}$ (d) $\frac{1}{r^3}$ and $\frac{1}{r^2}$			

Г

22.	Two charges of magnitude 5 nC and $-2nC,$ one	28. A	network of	four 20µFca	pacitors is	connected to a
	placed at points (2 cm, 0,0) and (x cm, 0,0) in a region of space, where there is no other external field. If the	60 Ca	00 V supply apacitance of	as shown in the network	the figure. is.	The equivalent
	electrostatic potential energy of the system is $-0.5\mu J.$ The value of x is.					
	(a) 20 cm (b) 80 cm (c) 4 cm (d) 16 cm			$\frac{1}{\Gamma}C_1$	$C_3 \perp$	
23.	A hollow charged metal sphere has radius r. If the potential difference between its surface and a point at a distance 3r from the centre is V, then the electric field intensity at distance 3r from the centre is -				64 1	
	(a) $\frac{\mathbf{v}}{3\mathbf{r}}$ (b) $\frac{\mathbf{v}}{4\mathbf{r}}$ (c) $\frac{\mathbf{v}}{6\mathbf{r}}$ (d) $\frac{\mathbf{v}}{2\mathbf{r}}$	(a) 30.26µF	(b) 20µF	(c) 26.67µ	F (d) 10μF
24.	The magnitude of electric field E in the annular region of a charged cylindrical capacitor (a) Is the same throughout? (b) Is higher near the outer cylinder than near the inner cylinder	29. TI ca (a	ne number o apacitors to o) 8	f ways one c btain distinct (b) 6	can arrange effective ca (c) 4	there identical apacitances is . (d) 3
	(c) Varies as $\frac{1}{r^2}$ where r is the distance from the axis as	30. № V	FOUNDA linimum num used to ma	nber of capac ke a compos	<mark>itors each d</mark> ite capacit	of 8µFand 250 or of 16µFand
	(d) Varies as $\frac{1}{r^2}$ where r is the distance from the axis.	1((a	000 V are.) 8 ((b) 32	(c) 16	(d) 24
25.	In a parallel plate capacitor, the capacity increases if (a) Area of the plate is decreased	31. A	spherical cap n and an ou	pacitor has ar iter sphere o	n inner sph f radius 11	ere of radius 10 cm. The outer
	(b) Distance between the plates increases	e Vot	where is erther 3.4μ C. The	ed and the inr	er s <mark>phere i</mark> een the co	s given a charge
	(c) Area of the plate is increased	is	filled with	a liquid of d	lie <mark>lectric</mark> co	onstant 28. The
	(d) Dielectric constant decreases.	ca (a	$\frac{1}{2} \times 10^{-9} \mathrm{F}$	capacitor is.	(b) 3.4×	10^{-9} F
		46) 4.1×10 ⁻⁹ F	24	(d) 5.2×	10^{-9} F
20		s-orb	it.org			

26. A parallel plate capacitor having area A and separated by distance d is filled by copper plate of thickness b. **32.** A cylindrical capacitor has two co – axial cylinders of The new capacity is.

(a)
$$\frac{\varepsilon_{o}A}{d-\frac{b}{2}}$$
 (b) $\frac{\varepsilon_{o}A}{2d}$ (c) $\frac{\varepsilon_{o}A}{d-b}$ (d) $\frac{\varepsilon_{o}A}{d-\frac{b}{2}}$

27. A parallel plate capacitor is made by placing is made by placing n equally spaced plates connected alternatively. If the capacitance between any two adjacent plates is C then the resultant capacitance is.

(a) nC (b)
$$\frac{C}{n}$$
 (c) $(n+1)C$ (d) $(n-1)C$

- length 20 cm and radii 1.5 cm and 1.6 cm. The outer cylinder is earthed and inner cylinder is given a charge of 4μ C. The capacitance of the system is (neglect end effects)
 - (b) $4.2 \times 10^{-14} \text{ F}$ (a) 2.8×10^{-8} F (c) 1.7×10^{-10} F
 - (d) $3.4 \times 10^{-12} \, F$

33.	A slab of material of dielectric constant K has the same area A sa the plates of a parallel plate capacitor, and has thickness $\left(\frac{3}{4}d\right)$, where d is the separation of the	39.	Which of the following crystals does not exhibit Frenkel defect? (a) AgBr (b) AgCl (c) KBr (d) ZnS
	plates. The change in capacitance when the slab is inserted between the plates is (a) $C = \frac{\varepsilon_0 A}{d} \left(\frac{K+3}{4K} \right)$ (b) $C = \frac{\varepsilon_0 A}{d} \left(\frac{2K}{K+3} \right)$ (c) $C = \frac{\varepsilon_0 A}{d} \left(\frac{2K}{K+3} \right)$ (d) $C = \frac{\varepsilon_0 A}{d} \left(\frac{4K}{K+3} \right)$	40.	Silver halides generally show (a) Schottky defect (b) Frenkel defect (c) Both Frenkel and Schottky defects (d) Cation excess defect
34.	A parallel plate capacitor is filled by a dielectric whose relative permittivity varies with the applied voltage (V) as $\varepsilon = \alpha V$ where $\alpha = 2 V^{-1}$. A similar capacitor with	41.	An electron trapped in an anion site in a crystal is called (a) F – centre (b) Frenkel defect (c) Schottky defect (d) Interstitial defect
	connected to the uncharged capacitor with the dielectric. Final voltage on the capacitor is. (a) $2 V$ (b) $3 V$ (c) $5 V^{ABS} d^{ADVANC}$ (d) $6 V_{ABMS} d^{ADVANC}$	42. 01H	P-type semiconductor are formed when Si or Ge are doped with St. UP food (a) Group 14 elements (b) Group 15
35.	Example of few solids are given below. Find out the example which is not correctly matched.		(c) Group 13 element (d) Group 18 element
	(a) Ionic solids - NaCl, ZnS (b) Covalent solids - H_2, I_2 (c) Molecular solids - $H_2O_{(s)}$ (d) Metallic solids - Cu, Sn	43. e	Which of the following metal oxides is Anti ferromagnetic in nature ? (a) MnO_2 (b) TiO_2 (c) NO_2 (d) CrO_2
		44.	Which of the following is an amorphous solid?
36.	For the structure given below the site marked as S is a	4) 5-0	 (a) Graphite (C) (b) Quartz glass (SiO₂) (c) Chrome alum (d) Silicon carbide (SiO) rbit.org
	 (a) Tetrahedral void (b) Cubic void (c) Octahedral void (d) None of these 	45.	Graphite is a good conductor of electricity due to the presence of
37.	The coordination number of metal crystallizing in a hexagonal close packing is (a) 12 (b) 4 (c) 8 (d) 6		(c) Cations (d) Anions
		46.	The lattice site in a pure crystal cannot be occupied by
38.	$Fe_{3}Ol$ (magnetite) is an example of (a) Normal spinel structure (b) Inverse spinel structure		(a) Molecule (b) Ion (c) Electron (d) Atom
	(c) Fluorite structure(d) Antifluorite structure	47.	In which pair most efficient packing is present?(a) hcp and bcc(b) hcp and ccp(c) bcc and ccp(d) bcc and simple cubic cell

48.	What kind of defects are introduced by doping? (a) 2 (b) 3 (c) 4 (d) 6	56.	Relationship between atomic radius and the edge length a of a body – centred cubic unit cell is $\sqrt{2}$
			(a) $r = a/2$ (b) $r = \sqrt{a/2}$ (c) $r = \frac{\sqrt{3}}{4}a$ (d) $r = \frac{3a}{2}$
49.	Which of the following defects is also known as dislocations defect? (a) Frenkel defect (b) Schottky defect (c) Non – stoichiometric defect (d) Simple interstitial defect	57.	An element with atomic mass 100 has a bcc structure and edge length 400pm. The density of element is (a) 564 pm (b) 282 pm (c) 234 pm (d) 538 pm
50.	The major binding force in diamond, silicon and		
	quartz is	58.	What is the mole fraction of glucose in 10 % w/W
	(c) Covalent bond force (d) Van der Waals forces		glucose solution? (a) 0.01 (b) 0.02 (c) 0.03 (d) 0.04
	0900		
51.	In NaCl structure, (a) All octahedral and tetrahedral sites are occupied (b) Only octahedral sites are occupied	59. 011	Among the following substance the lowest vapour pressure is exerted by. (a) Water (b) Alcohol (c) Ether (d) Mercury
	(c) Only tetrahedral sites are occupied		
	(d) Neither octahedral nor tetrahedral sites are		
	occupied.	60.	What is the molarities of a solution containing 10 g of NaOH in 500 mL of solution?
52.	If the radius of an octahedral void is r and radius of		(a) $0.25mol L^{-1}$ (b) $0.75mol L^{-1}$
	atoms in close packing is R, the relations between r		
	and R is (a) $r = 0.414R$ (b) $R = 0.414r$	е	way of success"
	(c) $r = 2R$ (d) $r - \sqrt{2}R$	61.	What will be the molarity of a solution of glucose in water which is 10 % w/W
	×<. ±01_0/5	Л	(a) $0.01m$ (b) $0.617m$
53.	Which of the following statement is not correct about		(c) 0.668 <i>m</i> (d) 1.62 <i>3m</i>
	hexagonal close packing?	5-0	rbit.org
	(b) It is AB AB type packing in which third layer is	62.	How many Na^+ ions are present in 100 mL of $0.25 M$
	aligned with the first layer.	01.	ofNaCl solution
	(c) Be, Mg, Mo etc. are found to have hcp structure.		(a) 0.025×10^{23} (b) 1.505×10^{22}
	(d) The coordination number is 6.		(c) 15×10^{22} (d) 2.5×10^{23}
54.	Total volume of atoms present in a fcc cell of a metal with radius r is 12 16 20 24	63.	When $1.04g$ of $BaCl_2$ is present in 10^5 g of solution the concentration of solution is
	(a) $\frac{12}{3}\pi r^3$ (b) $\frac{10}{3}\pi r^3$ (c) $\frac{20}{3}\pi r^3$ (d) $\frac{24}{3}\pi r^3$		(a) 0.104 ppm
55.	The fractions of the total volume occupied by the		(b) 10.4 ppm
	atoms present in a simple cube is		(c) 0.0104ppm
	(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{3\sqrt{2}}$ (d) $\frac{\pi}{4\sqrt{2}}$		(d) 104ppm

64.	What will be the mole fraction of ethanol in a sample of spirit containing 85% ethanol by mass (a) 0.69 (b) 0.82 (c) 0.85 (d) 0.60 Concentration terms like mass persentage norm male	71.	Which of the following contains three pairs of electrons in valence shell?(a) Carbocations(b) Carbanions
05.	fraction and molality do not depend on temperature, However, molarity is a function of temperature because.(a) Volume depends on temperature and molarity involves volume	72.	(c) Nucleophiles (d) Carbenes Which type of hybridisation of each carbon is there in the compound? $CH_3-CH=CH-CN$
	(b) Molarity involves non-volatile solute while all other terms involves volatile solute.(c) Number of moles of solute change with change in		(a) sp^3, sp^2, sp^2, sp (b) sp^3, sp^2, sp^2, sp^3
	temperature.		(c) sp^3 , sp^2 , sp^3 , sp^3 (d) sp^3 , sp^2 , sp , sp^3
	(d) Molarity is used for polar solvents only.	73.	Point out the incorrect statement about resonance? (a) Resonance structures should have equal energy.
66.	How much oxygen is dissolved in 100 mL water at 298 K if partial pressure of oxygen is 0.5 atm and $K = 1.4 \times 10^{-3}$ mol/L/ atm		(b)In resonance structures, the constituent atoms must be in the same position.
	(a) 22.4 mg (b) 22.4 g (c) 2.24g (d) 2.24 mg	ОТН	(c) In resonance structures, there should not be same number of electron pairs.
67.	 At high altitudes the partial pressure of oxygen is less than that at ground level. This leads to (a) Low concentrations of oxygen in the blood and tissues (b) High concentration of oxygen in the blood and tissues (c) Release of dissolved gases and formation of bubbles of nitrogen in the blood Out the total (d) Thickening of blood and tissues 	74. e	 (d) Resonance structures should differ only in the location of electrons around the constituent atoms. Free radicals can undergo. (a) Rearrangement to a more stable free radical (b) Decomposition to give another free radical (c)Combination with other free radical
68.	Partial pressure of a solution component is directly proportional to its mole fraction. This is known as (a) Henry's law (b) Raoult's law (c) Distribution law (d) Ostwald's dilution law	75. 5-0	(d) All are correct. The number of hyperconjugating structures shown by the carbocations are given below. Which one is not correctly matched? (a) $CH_3 - \overset{+}{C} - CH_3$ - 9 hyperconjugating structures CH_3
69.	 Which of the following solution shows positive deviation from Raoult's law? (a) Acetone + Aniline (b) Acetone + Ethanol (c) Water+ Nitric acid (d) Chloroform + Benzene 		(b) $CH_3 - CH - CH_3 - 8$ hyperconjugating structures (c) $CH_3 - CH_2 - 3$ hyperconjugating structures (d) $CH_3 - No$ hyperconjugating structures
70.	A plant cell shrinks when it is kept in a (a) Hypotonic solution (b) Hypertonic solution (c) Isotonic solution (d) Pure water		

76.	Which of the following alcohols on dehydration gives most stable carbocation? (a)	80. Which of the following has incorrect direction of Inductive effect.
	$CH_3 - CH - CH_2OH$ CH_3	(a) (b) (c) - OH
	(b) CHa	Kr A CH₃
	$CH_3 - C - OH$ CH_3	o ∥ ∽-∽o [®]
	(c) $CH_3 - CH_2 - CH_2 - CH_2OH$	(c) (d) $CH_3 \leftarrow C \rightarrow CH_2 \rightarrow CH_3$
	(d) $CH_3 - CH - CH_2CH_3$ OH	ERTIFIED INC
		81. Which of the following group shows + I effects :
77.	Inductive effect involves (a) Displacement of σ – electrons resulting in	(a) – F FOUNDATION (b) – CHO
	(b) Displacement of π – electrons resulting in polarization	(c) $\stackrel{\text{ep}}{=} \stackrel{\text{o}}{\text{NH}}$ (d) – CN
	(c) Delocalisation of σ – electrons	82. Arrange following compounds in decreasing order of their dipole moment.
70	(d) Delocalisation of π – electrons.	(I) $CH_3 - CH_2 - NO_2$
78.	are zinc nitrate, sulphuric acid and nitrogen dioxide. What are the changes in the oxidation numbers of Zn,	(II) CH ₃ -CH ₂ -CLICCESS"
	S and N: (a) $+ 2, + 4, - 1$ (b) $+ 2, + 6, - 2$ (c) $0, + 4, - 2$ (d) $0, + 8, - 1$	(III) CH ₃ -CH ₂ -Br
	+91-945	(IV) $CH_3 - CH_2 - I$
79.	The following equations are balanced atomwise and	s-orbi (a) IV > III > I > II (b) IV > I > III > II
	chargewise. (i) $Cr_2O_7^{2-} + 8H^+ + 3H_2O_2 \longrightarrow 2Cr^{3+} + 7H_2O + 3O_2$	(c) I > III > IV > II (d) I > II > III > IV
	(ii) $Cr_2O_7^{2-} + 8H^+ + 5H_2O_2 \longrightarrow 2Cr^{3+} + 9H_2O_+$	83. Hyperconjugation is possible in which of the following species ?
	40 ₂	(a) $CH_{a}-CH_{a}$ (b) $C_{c}H_{c}-CH_{a}$
	(iii) $Cr_2O_7^{2-} + 8H^+ + 7H_2O_2 \longrightarrow 2Cr^{3+} + 11H_2O +$	CH.
	50 ₂	(c) $CH_2 = CH_2$ (d) $CH_3 - C - CH = CH_2$
	The precise equation/equations representing the oxidation of ${\rm H}_2{\rm O}_2$ is/are :	ĊH₃
	(a) (i) only(b) (ii) only(c) (iii) only(d) all the three	

106. Which is not the pair of enantiomers ?	
(a) $H \xrightarrow{CH_3} CH_3$ $C_2H_5 C_2H_5$ (b) $COOH$ (b) CH_3 C_2H_5 COOH COOH COOH	112. Which of the following alkyl halides will undergo S_N^1 reaction most readily? (a) $(CH_3)_3C - F$ (b) $(CH_3)_3C - Cl$ (c) $(CH_3)_3C - Br$ (d) $(CH_3)_3C - I$
(u) H HO CH_3 HO CH_3 (c) Br H Br H Br H (c) Br H Br H C_2H_5 (c) Br H	 113. Which of the following halides is not correct according to the name and classification? (a) CH₃CH₂C(CH₃)₂CH₂I 1- lodo -2, 2-dimethylbutane, primary haloalkane (b) (CH₃)₂CHCH(Cl)CH₃ 2-Chloro -3-methylbutane, secondary halolkane (c) CH₃C(Cl)(C₂H₅)CH₂CH₃ 2-Chloro -2-ethylbutane, secondary haloalkane
107. The instrument which can be used to measure optical activity, i.e., specific rotation:	(d) $CH_3 - CH_2 - CH - CH - CH_2 - CH_3$ 3-Chloro -4-methylhexane, secondary haloalkane
(a) Refractometer (b) Photometer (c) Voltmeter (d) Polarimeter	114. Identify the products X and Y formed in the folloing reaction;
108. The minimum torsional strain developed in butane is at dihedral angle(s)	$CH_{3}-CH_{2}-CH=CH-CH_{3}+HCl\longrightarrow X+Y$ (a) X=CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}CH_{2}-CH-CH_{2}CH_{3}
(a) 0º, 108º "Turns your life to tr (c) 60°, 180°, 300° (d) 60°, 120°, 180°	(b) $X = CH_{3}CH_{2} - CH - CH_{2}CH_{3}, Y = CH_{3}CH_{2}CH_{2} - CH - CH_{3}$ (c) $X = CH_{3}CH_{2} - CH - CH_{2}CH_{3}, Y = CH_{3} - CH - CH - CH_{2}CH_{3}.$
 109. Which of the following is not an allylic halide? (a) 4- Bromopent - 2 - ene (b) 3- bromo -2- methylbut -1-ene (c) 1-Bromobut -2- ene (d) 4-bromobut -1-ene 	(d) $X = CICH_2 - CH_2 - CH = CH - CH_3, Y = CH_3CH_2 - CH = CH - CH_2CI$ s-orbit.org
 (d) 4-bromobul -1-ene 110. The IUPAC name of (CH₃)₂CH - CH₂ - CH₂Br is (a) 1- Bromopentane (b) 1-bromo-3-methylbutane (c) 2-methyl-4-bromobutane (d) 2-methyl-3-bromopropane 	 115. Alkyl halides are immiscible in water though they are polar because. (a) They react with water to give alcohols (b) They cannot form hydrogen bonds with water (c) C - X bond cannot be broken easily (d) They are stable compounds and are not reactive
 111. Which of the following compounds will have highest melting points. (a) Chlorobenzene (b) o-Dichlorobenzene (c) m- Dichlorobenzene (d) p- Dichorobenzene. 	 116. Which of the following alkyl halides undergoes hydrolysis water aqueous KOH at the faster rate? (a) CH₃CH₂CH₂Cl (b) CH₃CH₂Cl₂Cl (c) CH₃CH₂CH₂CH₂Cl (d) CH₃CH₂CH(Br)CH₃

117. Identify the products (A) and (B) in the reactions. $RX + AgCN \rightarrow (A) + AgX$:	NH_2 NaNO ₂ + HCl Cu.Br
$RX + KCN \rightarrow (B) + KX$	123. $X \xrightarrow{280 \text{ K}} X \xrightarrow{280 \text{ K}} Y$. X and Y in the
(a) (A) \times PCN (B) \times PCN	reaction are.
(a) $(A) \rightarrow RCN, (B) \rightarrow RCN$	$\dot{N}_2 C \bar{l} Br$ $\dot{N}_2 C \bar{l} Br$
(b) (A) \rightarrow Ref. (B) \rightarrow Ref.	
(c) (A) \rightarrow RINC, (D) \rightarrow RCN (d) (A) \rightarrow DNC (P) \rightarrow DNC	(a) (b) (b)
$(u) (A) \rightarrow KivC, (B) \rightarrow KivC$	$\vec{N}_2 \vec{C} \vec{I} = \vec{B} \vec{r}$
118. $CH_3OH \xrightarrow{PI_3} X \xrightarrow{KCN} Y \xrightarrow{Hydrolysis} Z.$	(c) A Br (d) A Br Br
a) CH OH	(-)
(a) CH_3OH (b) $HCOOH$	
(c) CH_3CHO (d) CH_3COOH 15 (124. Apomixis in plant means development of a plant
119. An alkyl halide, RX reacts with KCN to give propane nitrile. RX is	(a) From root cuttings (b) Without fusion of gametes
(a) C_3H_7Br (b) C_4H_9Br (c) C_2H_5Br (d) $C_5H_{11}Br$	(c) From fusion of gametes (d) From stem of cuttings
120. $S_N 1$ reaction is fastest in	FOUNDATION
CH ₃ —CH—CH ₃ ^{M5}	OTHER CBSE, ICSE, UP Board
(a) CH_3CH_2Br (b) Cl	obtained from
CH ₃ CH ₃ -CH-Cl	(a) Seeds (b) Stem cutting
$CH_3 - C - CI$	
(c) CH_3 (d) CH_3	(c) Both (a) and (b) (d) None of these
121. Which of the following reaction does not take place?	126 Penroducing new plants by colls instead of souds is
(a) $C_2H_5Br + KNO_2 \rightarrow C_2H_5 - O - N = O + KBr$ to the	known as
(b)	(a) Biofertilizer (b) Mutation
$C_{+}H_{+}Br_{+} + A_{9}NQ_{+} \rightarrow C_{+}H_{+} = - + A_{9}Br_{+}$	(c) Tissue culture
N N	
(c) $C_{a}H_{a}Br + A \sigma CN \rightarrow C_{a}H_{a}NC + A \sigma Br$	4606724
(d) C H Br + KCN \rightarrow C H NC + KBr	127. The reason of formation of embryoid from pollen
	grain in a tissue culture medium is
122. Which is the correct increasing order of boiling	(a) Organogenesis (b) Double fertilization
points of the following compounds.	(c) Test tube culture (d) Cellular totipotency
1-Bromoethane , 1-Bromopropane, 1-Bromobutane,	
Bromobenzene	
(a) Bromobenzene < 1- Bromobutane < 1-	128. In which one pair both the plants can be vegetatively
(b) Bromobenzene < 1 - Bromoethane < 1 -	propagated by leaf pieces
Bromopropane < 1- Bromobutane	(a) Bryophyllum and Kalanchoe
(c) 1- Bromopropane < 1-bromobuatane < 1-	(b) Chrysanthemum and Agave
Bromoehane < Bromobenzene	
(d) 1- Bromoehane < 1- Bromopropane < 1-	(c) Agave and Kalanchoe
Bromobutane < Bromobenzene	(d) Asparagus and Bryophyllum

129. S pro	tem cuttin pagation of	igs are	commonly	used for	the	135.	Anthesis is		
(a)	Banana	(b) Rose	(c) Mango	(d) Cott	on		(a) opening of flower b	bud	
							(b) pollen mother cell	under going meiosis	
130.	Hypohydro	phily occur	s in				(c) Dehiscence of Anth	er	
	(a) Vallisne	ria	(b) <i>Elodea</i>				(d) Stigma becomes re	ceptive	
	(c) Alisma		(d) <i>Ceratop</i>	hyllum					
						136. D	evelopment of embryo	from the cells of the nucellus	
131.	Stigma is al	ways rough	n and sticky in	-		is c (a)	alled Parthenocarpy	(b) Apocarpy	
	(a) Entomo	philous flow	wers			(c)	Adventive embryony	(d) Apospory	
	(b) Anemor	philous flow	vers						
	(c) Hydroph	nilous flowe	ers			137. Ir	n a type of apomixis know	own as adventive embryony,	
	(d) All type	s of flowers				em (a)	Nucellus or integument	s	
132.	Fragrant flo	wers with	well develop	<mark>ed ne</mark> ctarie	AIIMS 8 es are	OTHER (b)	Synergids or antipodals	in <mark>a emb</mark> ryo sac	
an	n adaptation f <mark>or-</mark>				(c) Accessary embryo sacs in the ovule				
	(a) Zoophily		(b) Anemor	ohily		(d)			
	(c) Entomo	phily	(d) Hydropl	hily		(4)	-18000		
133.	Pollination	by snails ar	nd slugs is-O			138. fer	How many Nucleu ilization of <i>Capsella</i>	s participate in double	
	(a) Ornitho	phily	(b) Chiropt	erophily			(a) 2	(b) 5	
	(c) Entomo	phily	(d) Malaco	ohily			(c) 3	(d) 4	
						46			
134.	From amo	ng the situ	ations given	below, ch	noose	139.	Double fertilization w	as discovered by Nawaschin	
the	one that	at prever	nts both a	autogamy	and	in			
gei	() N			1.0			(a) Polygonum, Magno	lia	
	(a) Monoed	cious plant	bearing unise	xual flower	rs		(b) Lilium, Polygonum		
	(b) Dioecio flowers	us plant b	earing only	male or fe	emale		(c) Fritillaria, Lilium		
	(c) Monoec	ious plant v	with bisexual	flowers			(d) Fritillaria, Peprome	20	
	(d) Dioecio	us plant wit	th bisexual flo	owers					
						140.	<i>Casuarina</i> shows		
							(a) Porogamy	(b) Mesogamy	
							(c) Chalazogamy	(d) Acrogamy	

141.	Pollen tube enters in embryo sac through	145.	In angiosperms normally after fertilization	
	(a) egg cell (b) synergid		(a) The zygote divides earlier than the primary endosperm nucleus	
142. sub mic	(d) Degenerated synergid Which of the following secrete chemical ostances for attracting pollen tube towards cropyle of ovule (a) Obturator (b) Synergid (c) Filiform apparatus (d) Antipodal cells	 (b) The primary endosperm nucleus divides earlier than the zygote (c) Both the zygote and primary endosperm nucleus divide simultaneously (d) Both the zygote and primary endosperm 		
143.	The correct sequence of embryo formation is-		nucleus undergo a resting period	
143.	 (a) heart shaped, globular, mature embryo, proembryo (b) proembryo, mature embryo, globular, heart shaped (c) globular, proembryo, heart shaped, mature embryo (d) proembryo, globular, heart shaped, mature embryo (a) b (b) c (c) a 	ERT 146. To of (a) (b) (c) (d) 147. D ant (a)	ectum, baculum, foot layer are the different parts Microspore wall Microspore mother cell wall Megaspore wall Megaspore mother cell wall evelopment and formation of pollen grains in her of the stamen is known as Pollination (b) Fertilization	
144.	In the above diagram, Identify the correct Labelling & select the correct option	(c) 148. N (a) 1 (b) 5-0101 (c) 1 (d)	Aicrosporogenesis is a synonym for Spermatogenesis Development of pollen Development of male gametophyte Development of female gametophyte	
	 (a) a - Embryo axis, b - Endosperm, c - Coleorhiza, d - scutellum, e - coleoptile (b) a - Radicle, b - Aleuron layer, c - Coleorhiza, d - Endosperm, e - Plumula (c) a - Radicle, b - Endosperm, c - Coleorhiza, d - scutellum, e - Plumule (d) a - Embryo axis, b - Aleuron layer, c - Root-cap, d - Endosperm, e - Coleoptile 	149. Ir der (a) (b) (c)	n flowering plants, a mature 'male gametophyte' is ived from a 'pollen mother cell' by Three mitotic divisions One meiotic and two mitotic divisions Two meiotic divisions A single meiotic division	

 150. Mature male gametophyte is made up of (a) One cell (b) Two cells (c) Three cells (d) Four cells 151Kupffer cells are present in (a) Pancreas (b) Thyroid gland (c) Liver (d) Small intestine 152. Diagnosis of sexually-transmitted disease is done by (c) Diagnosis of sexually-transmitted disease is done by 			 Bartholin's glands are situated (a) At the reduced tail end of birds (b) On either side of vagina in human females (c) On either side of vas deferens in human males (d) On the either side of the head of some amphibians
s present in the	(d) All these the secretion of 015 ((b) Cowper's gland (d) Seminal vesicles	159. fen ERT	The fertilization of an egg, by the sperm, in the nale genital tract, takes place in the (a) Uterus (b) Ovary (c) Vagina (d) Oviduct (fallopian tube)
didymis leads stis erens	(d) Seminar Vesicles IIIT-JEE NE AIMS & ADVANCE (b) Vas deferens (d) Ejaculatory duct	160. spe	The number of chromosomes in a primary ermatocyte is (a) Same as that of secondary spermatocyte (b) Same as that of spermatid
i cells are fou n as cells	und in the testis. These cells Irms your life to th (b) Reproductive cells (d) Germ cells	e wa 161.	 (c) Half of that of spermatogonium (d) Same as that of spermatogonium (d) Same as that of spermatogonium (e) Same as that of spermatogonium (f) Same as that
olin's glands which glands 's glands	+91-945 s of a mammalian female s in the mammalian male?	4.6 s-orbi 162.	 (a) Oogenesis (b) Abortion (c) Fertilization (d) Ovulation The correct sequence of cell stages in termatogenesis is
al glands glands e gland is a part ey dymis en uterus and	(b) of fallopian tube d vagina		 (a) Spermatocytes, spermatids, spermatogonia, spermatozoa (b) Spermatogonia, spermatocytes, spermatids, spermatozoa (c) Spermatocytes, spermatogonia, spermatids, spermatozoa (d) Spermatogonia, spermatids, spermatocytes, spermatozoa
	e gametophy (b) Tr (b) Tr (are present in sis of sexually ization s present in t olin's gland eal glands estis erens i cells are for n as estis erens i cells are for n as cells or cells or cells or cells al glands te glands	e gametophyte is made up of (b) Two cells (d) Four cells are present in (b) Thyroid gland (d) Small intestine sis of sexually-transmitted disease is done by ization (b) PCR (d) All these s present in the secretion of olin's gland (b) Cowper's gland eal glands (d) Seminal vesicles (d) Seminal vesicles (d) Ejaculatory duct (d) Ejaculatory duct (d) Ejaculatory duct (b) Reproductive cells or cells (d) Germ cells (b) Reproductive cells or cells (d) Germ cells (b) Reproductive cells or cells (d) Germ cells (b) Reproductive cells or cells (d) Germ cells (d) Germ cells (b) Reproductive cells or cells (d) Germ cells (b) Reproductive cells or cells (d) Germ cells (b) Reproductive cells or cells (d) Germ cells (b) Reproductive cells (c) Germ cells (b) Reproductive cells (c) Germ c	a gametophyte is made up of (b) Two cells (d) Four cells (d) Four cells (e) Thyroid gland (d) Small intestine (d) Small intestine (e) PCR (d) All these (e) All these (for the secretion of plin's gland (b) Cowper's gland (e) Seminal vesicles (for the secretion of plin's gland (b) Cowper's gland (e) Seminal vesicles (for the secretion of plin's gland (b) Cowper's gland (e) Seminal vesicles (for the secretion of plin's gland (b) Cowper's gland (for the secretion of plin's gland (b) Cowper's gland (for the secretion of plin's gland (c) Seminal vesicles (for the secretion of plin's glands (c) Seminal vesicles (for the secretion of plin's glands (c) Seminal vesicles (for the secretion of plin's glands of a mammalian female which glands in the mammalian female which glands of a mammalian female which glands in the mammalian male? (for the secretion (for the secretion of the secretion of the secretion (for the secretion of the secretion of the secretion of the secretion of the secretion (for the secretion of the

163. hur	Which hormone/s con man beings?	trol the menstrual cycle in	169. Which one of the following is the most likely root cause of absence of menstruation a human female
	(a) LH	(b) Progesterone	having regular cycles ?
	(c) FSH	(d)FSH, LH, Oestrogen	(a) Fertilisation of the ovum
		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(b) Maintenance of the hypertrophied endometrium
164. inv	In spermatogenesis, olves the	the phase of maturation	(c) Maintenance of high concentration of sex hormones in the blood stream
	(a) Growth of sper spermatocytes	rmatogonia to form primary	(d) Retention of well developed corpus luteum
	(b) Formation of spe spermatocytes through	ermatogonia from primary	170. A change in the amount of yolk and its distribution in the egg will affect
	(c) Formation of	spermatids from primary	(a) Formation of zygote
	spermatocytes through	meiosis	(b) Pattern of cleavage
	(d) Formation of oogo	nia f <mark>rom the sperm</mark> atocytes	(c) Number of blastomeres produced
	through meiosis	AIIMS & ADVANCE AIIMS &	(d) Fertilization
			171. The skeleton and muscles orginate in the
165.	Ovulation normally occ	urs during	development from or during embryonic development.
	(a) 11 th - 12 th	(b) 14 th -16 th	Endoskeleton and muscles develop from which germinal layer?
	(c) 15 th - 28 th	(d) 21 th -26 th	(a) Ectoderm (b) Endoderm
		irns your life to th	e way of success? (c) Mesoderm (d) Yolk plug
166.	An enzyme present in a	a sperm is/are	
	(a) Spermin	(b) Lysozyme	172. The reaction between phenol and chloroform in the
	(c) Sperm lysin	(d) Hydrolytic enzyme	presence of aqueous NaOH is (a) Nucleophilic substitution reaction
		www.	5-0 (b) Electrophilic addition reaction
167.	Which one of the follow	wing hormones, controls the	(c) Electrophilic substitution reaction (d) Nucleophilic addition reaction
fun	ction of sertoli cells?		
	(a) FSH	(b) Oestrogen	173. Methyl alcohol is industrially prepared by the action of
	(c) ACTH	(d) Testosterone	(a) CH_3COCH_3 (b) $CO + H_2$
			(c) CH_3COOH (d) C_2H_5OH
168. hor lute	An inhibition of secreti mones is necessary for eum ?	on of which of the following the disintegration of corpus	174. The process of converting alkyl halides into alcohols involves(a) Addition reaction(b) Substitution reaction
	(a) LH	(b) Progesterone	(c) Dehydrohalogenation reaction
	(c) LTH	(d) FSH	נטן הבמוזמוקבווובווג ובמנגוטוו

175. Which of the following is m(a) Benzyl alcohol(c) Phenol	iost acidic? (b) Cyclohexanol (d) m-Chlorophenol	180. $(CH_3)_3 C - CH_2 OH \xrightarrow{Conc.H_2SO_4} X$ In the reaction X is (a) $(CH_3)_2 = CHCH_3$ (b) $CH_3 \equiv CH$ (c) $(CH_3)_2 = CHCH_3$ (c) $CH_3 - CH_2 - C = CH_2$
 176. For the reaction C₂H₅OH + HX → C₂H₅X + reactivity is (a) HCl > HBr > HI (c) HBr > HCl > HI 177. Which of the following phenol? (a) (i) Fusion with NaOH at 300 at (ii) H₂O/H⁺ (b) NH₂ (i) NaNO₂/HCl (ii) H₂O (warming) (c) (i) Oleum (ii) NaOH, (heating) (iii) H²O (warming) (c) (i) NaOH_(aq.), 298 K/1 atm 178. Which of the following alcostable carbocation during del (a) 2-Methyl -1-propanol (c) 1-Butanol 179. Which of the following i alcohol? (a) They are lighter than wate (b) Their boiling points rise f molecular weight (c) Lower members are insolusiolity molecular mass. 	+ H ₂ O; the order of (b) HI > HBr > HCl (d) HI > HCl > HBr reaction will not yield Treaction will not yield (IIII - JEEE (NEAL) (IIII - JEEE (IIII - JEEE (IIIII - JEEE (IIII - JEEE (IIIII - JEEE (IIIII - JEEE (IIIII - JEEE (IIIIII - JEEE (IIIII - JEEE	(c) $(CH_3)_2$ CHCH_2CH ₃ (d) $CH_3 - CH_2 - C = CH_2$ (c) $(CH_3)_2$ CHCH ₂ CH ₃ (d) $CH_3 - CH_2 - C = CH_2$ (H ₃ (e) $CH_3 - CH_2 - C = CH_2$ (CH ₃ (f) $CH_3 - CH_2 - C = CH_2$ (CH ₃ (g) $CH_3 - CH_2 - C = CH_2$ (h) $CH_3 - CH_2 - C = CH_2$ (c) $CH_3 - CH_2 - C = CH_2$ (c) $CH_3 - CH_2 - C = CH_2$ (c) $CH_3 - CH_2 - C = CH_2$ (d) $CH_3 - CH_2 - C = CH_2$ (e) $CH_3 - CH_2 - C = CH_2$ (f) $CH_3 - CH_3 - CH_3$ (f) $CH_3 - CH_3 - CH_3 - $
taste, higher members are	colourless and tasteless	

186. Fill in the blanks in the given reactions.	
(i) $CH_2-C-OCH_3 \xrightarrow{NaBH_4} (X)$ (ii) $CH_2-CH_2-CH_3 \xrightarrow{NaBH_4} (X)$	189. Cumene on reaction with oxygen followed by hydrolysis gives (a) CH_3OH and $C_6H_5COCH_3$
	(b) C_6H_5OH and $(CH_3)_2O$
(a)	(c) $C_6H_5OCH_3$ and CH_3OH
$(X) \rightarrow \bigcup_{\substack{\parallel\\ 0H}}^{O} CH_2 - CH - OCH_3;$	(d) C_6H_5OH and CH_3COCH_3
$(Y) \rightarrow CH_{3}CH_{2}CH - CH_{2}OH$ $ $ CH_{3} (h)	190. With increase in temperature the conductivity of(a) Metals increases and of semiconductor decreases.
(b) OH	ER (b) Semiconductors increases and of metals decreases.
$(X) \rightarrow \bigcup^{CH_2 - CH_2 - CH_3}_{I};$	(c) In both metals and semiconductors increase.
$(Y) \rightarrow CH_3CH_2 - CH_2CH_2OH$	(d) In both metal and semiconductor decreases.
(c)	FOUNDATION OTHER CBSE, ICSE, UP Board
он	191. An electric heater is connected to the voltage supply
$(X) \rightarrow \bigcirc CH_2 - C - OCH_3$	initial current will be
	(a) Equal to its steady current
$(1) \rightarrow CH_3CH_2 - CH - CH_2OH$	(b) Slightly higher than its steady current
(d)	(c) Slightly less than its steady current
$(X) \rightarrow \bigcup^{CH_2-C-OCH_2OH_1}_{\underline{\parallel}}, \text{ our life to th}$	e v(d) žero f success"
$(Y) \rightarrow CH_3CH_2CH_2CH_2CH_2OH$	2-1
	192. Three resistors of resistances 3Ω , 4Ω and 5Ω are
	a battery of emf 12V and negligible internal resistance,
187. A primary alcohol, $C_3H_8O(A)$ on heating with	current through each resistor in ampere is
sulphuric acid undergo dehydration to give an alkene,	(a) 4, 3, 2.4 (b) 8, 7, 3.4 (c) 2, 5, 1.8 (d) 5, 5, 8.2
B-B when reacted with HCl gave C, which on treatment with aqueous KOH gives compound $D(C_2H_2O)$. A and	
D are	193. In a circuit a cell with internal resistance r is
(a) Functional isomers (b) Position isomers	connected to an external resistance R. The condition
(c) Chain isomers (d) Stereo isomers 188. Which of the following is the proper method to proper a boyon from a propul also hold	(a) R = r (b) R < r (c) R > r (d) R = 0
$CH_{2}CH_{2}CH_{2}OH \xrightarrow{(X)} CH_{2}CH_{2}CH_{2}Br$	
$\xrightarrow{(Y)} CH_3(CH_2)_4CH_3$	194. The battery of a trunk has an emp of 24 V. If the
(a) $(X) \rightarrow HBr, (Y) \rightarrow HCN$	internal resistance of the battery is 0.8 Ω . What is the
(b) $(X) \rightarrow HBr, (Y) \rightarrow Na$, ether	(a) 30 A (b) 32 A
(c) $(X) \rightarrow Br_2, (Y) \rightarrow CH_3CN$	
(d) $(X) \rightarrow Br_2, (Y) \rightarrow KMnO_4$	(c) 33 A (d) 34 A

