1.The equation $x^{\log _{x}(2+x)^{2}}=25$ holds for
(a) $x=6$
(b) $x=-3$
(c) $x=3$
(d) $x=7$
2. $\frac{2}{3!}+\frac{4}{5!}+\frac{6}{7!}+\ldots \ldots \ldots . . \infty=$
(a)e
(b) 2 e
(c) e^{2}
(d) $1 / e$
3. $\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\ldots \infty=$
(a) $\log _{e}\left(\frac{4}{e}\right)$
(b) $\log _{e} \frac{e}{4}$
(c) $\log _{e} 4$
(d) $\log _{e} 2$
4. $0.5-\frac{(0.5)^{2}}{2}+\frac{(0.5)^{3}}{3}-\frac{(0.5)^{4}}{4}+\ldots . . .$.
(a) $\log _{e}\left(\frac{3}{2}\right)$
(b) $\log _{10}\left(\frac{1}{2}\right)$
(c) $\log _{e}(n!)$
(d) $\log _{e}\left(\frac{1}{2}\right)$
5. Both the roots of given equation
$(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$ are always
(a) Positive
(b) Negative
(c) Real
(d) Imaginary
6. If 3 is a root of $x^{2}+k x-24=0$, it is also a root of
(a) $x^{2}+5 x+k=0$
(b) $x^{2}-5 x+k=0$
(c) $x^{2}-k x+6=0$
(d) $x^{2}+k x+24=0$
7. For what values of k will the equation $x^{2}-2(1+3 k) x+7(3+2 k)=0$ have equal roots
(a) $1,-10 / 9$
(b) 2, -10/9
(c) $3,-10 / 9$
(d) $4,-10 / 9$
8. If the roots of the equation $x^{2}-5 x+16=0$ are α, β and the roots of equation $x^{2}+p x+q=0$ are $\alpha^{2}+\beta^{2}, \alpha \beta / 2$, then
(a) $p=1, q=-56$
(b) $p=-1, q=-56$
(c) $p=1, q=56$
(d) $p=-1, q=56$
9. If one root of a quadratic equation is $\frac{1}{2+\sqrt{5}}$, then the equation is
(a) $x^{2}+4 x+1=0$
(b) $x^{2}+4 x-1=0$
(c) $x^{2}-4 x+1=0$
(d) None of these
10. If $\left(\frac{3}{4}\right)^{x}=7$ then $x=$
(a) $\frac{\log 7}{\log 4-\log 3}$
(b) $\log _{7}(3 / 4)$
(c) $\frac{\log 7}{\log 3-\log 4}$
(d) $\log _{7}(4 / 3)$
11. If α, β be the roots of $a x^{2}+b x+c=0 ; \gamma, \delta$ be the roots of $p x^{2}+q x+r=0$; and D_{1}, D_{2} the respective discriminants. If $\alpha, \beta, \gamma, \delta$ are in A.P. then $D_{1}: D_{2}=$
(a) $\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}$
(b) $\frac{\mathrm{a}^{2}}{\mathrm{p}^{2}}$
(c) $\frac{b^{2}}{q^{2}}$
(d) $\frac{\mathrm{c}^{2}}{\mathrm{r}^{2}}$
12. For the equation $3 x^{2}+p x+3=0, p>0$, if one of the roots is square of other, than $p=$
(a) $1 / 3$
(b) 1
(c) -6
(d) 3
13. If the roots of the equation $\frac{x^{2}-b x}{a x-c}=\frac{\lambda-1}{\lambda+1}$ are such that $\alpha+\beta=0$, then the value of λ is-
(a) $\frac{a-b}{a+b}$
(b) c
(c) $\frac{1}{\mathrm{c}}$
(d) $\frac{a+b}{a-b}$
14. If the roots of $a_{1} x^{2}+b_{1} x+c_{1}=0$ are α_{1}, β_{1}, and those of $a_{2} x^{2}+b_{2} x+c_{2}=0$ are α_{2}, β_{2} such that $\alpha_{1} \alpha_{2}=\beta_{1} \beta_{2}=1$ then-
(a) $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
(b) $\frac{\mathrm{a}_{1}}{\mathrm{c}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{a}_{2}}$
(c) $a_{1} a_{2}=b_{1} b_{2}=c_{1} c_{2}$
(d) None of these
15. If the sum of the first $2 n$ terms of $2,5,8 \ldots$ is equal to the sum of the first n terms of $57,59,61 \ldots$, then n is equal to
(a) 10
(b) 12
(c) 11
(d) 13
16. The sum of n terms of the series $\frac{1}{1+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\ldots \ldots .$. is
(a) $\sqrt{2 n+1}$
(b) $\frac{1}{2} \sqrt{2 n+1}$
(c) $\sqrt{2 n-1}$
(d) $\frac{1}{2}(\sqrt{2 n+1}-1)$
17. The sum of first two terms of a G.P. is 1 and every term of this series is twice of its previous term, then the first term will be
(a) $\frac{1}{4}$
(b) $\frac{1}{3}$
(c) $\frac{2}{3}$
(d) $\frac{3}{4}$
18. If a, b, care in A.P. $b-a, c-b$ and a are in G.P., then $a: b$: c is
(a) $1: 2: 3$
(b) $1: 3: 5$
(c) $2: 3: 4$
(d) $1: 2$:

4
19. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in H.P., then the value of $\frac{\boldsymbol{b}+\boldsymbol{a}}{\boldsymbol{b}-\boldsymbol{a}}+\frac{\boldsymbol{b}+\boldsymbol{c}}{\boldsymbol{b}-\boldsymbol{c}}$ is
(a) 0
(b) 1
(c) 2
(d) 3
20. If the sixth term of an A.P. is equal to 2 . the value of the common difference of the A.P. which makes the product $a_{1} a_{4} a_{5}$ the greatest is (the $i^{\text {th }}$ term is denoted by a)
(a) $\frac{8}{5}$
(b) 3
(c) 2
(d) $\frac{4}{5}$
21. $C_{1}+2 C_{2}+3 C_{3}+\ldots . .^{n} C_{n}=$
(a) 2^{n}
(b) $\mathrm{n} \cdot 2^{\mathrm{n}}$
(c) $\mathrm{n} .2^{\mathrm{n}-1}$
(d) $\mathrm{n} .2^{\mathrm{n}+1}$
22. The co-efficient of y in the expansion of $\left(y^{2}+c / y\right)^{5}$ is
(a) $10 \mathrm{c}^{3}$
(b) $20 \mathrm{c}^{2}$
(c) 10 c
(d) 20 c
23. The number of prime factors of the coefficient of x^{8} in the expansion of $\left(1-2 x+3 x^{2}-4 x^{3}+5 x^{4}-6 x^{5}+\right.$ $\left.7 x^{6}\right)^{6}$ is-
(a) 3
(b) 4
(c) 5
(d) 6
24. The value of $(n+2) \cdot C_{0} 2^{n+1}-(n+1) \cdot C_{1} 2^{n}+n \cdot C_{2} 2^{n-1} \cdots$ is
(a) $4(1+n)$
(b) $4 n$
(c) $2 n$
(d) $2(n+2)$
25. The number of rational term in the expansion of $(1+\sqrt{2}+\sqrt[3]{5})^{6}$ is -
(a) 7
(b) 10
(c) 11
(d) None of these
26. The number of ways in which 5 beads of different colours form a necklace is
(a) 12
(b) 24
(c) 120
(d) 60
27. There are 20 persons among whom are two brothers. The number of ways in which we can arrange them around a circle so that there is exactly one person between the brothers is
(a) 19 !
(b) 2×18 !
(c) $2!17$!
(d) None of these
28. In the above question, the no. of ways can this be done such that $n(P)=n(Q)$
(a) 2^{n}
(b) 4^{n}
(c) 3^{n}
(d) $2 \mathrm{nC}_{\mathrm{n}}$
29. The no. of dissimilar terms in the expansion of $(a+b+c)^{10}$ is
(a) 66
(b) 60
(c) 11
(d) 45
30. The number of ways in which 52 cards can be distributed among four players, each receiving 13 cards, is
(a) $\frac{\angle 52}{(\angle 13)^{4} \times 4}$
(b) $\frac{\angle 52}{(\angle 13)^{4}}$
(c) $\frac{\angle 52}{(\angle 13)^{4} \angle 4}$
(d) None
31. Which of the following species has unpaired electrons?
(a) N_{2}
(b) F_{2}
(c) O_{2}^{-}
(d) O_{2}^{2-}
32. Which of the following molecules is paramagnetic in nature?
(a) H_{2}
(b) Li_{2}
(c) B_{2}
(d) N_{2}
33. On the basis of intermolecular forces predict the correct order of decreasing boiling points of the compounds -
(a) $\mathrm{CH}_{3} \mathrm{OH}>\mathrm{H}_{2}>\mathrm{CH}_{4}$
(b) $\mathrm{CH}_{3} \mathrm{OH}>\mathrm{CH}_{4}>\mathrm{H}_{2}$
(c) $\mathrm{CH}_{4}>\mathrm{CH}_{3} \mathrm{OH}>\mathrm{H}_{2}$
(d) $\mathrm{H}_{2}>\mathrm{CH}_{4}>\mathrm{CH}_{3} \mathrm{OH}$
34. The hybridisation of the underline atom changes in :
(a) AlH_{3} changes to AlH_{4}^{-}
(b) $\mathrm{H}_{2} \mathrm{O}$ changes to $\mathrm{H}_{3} \mathrm{O}^{+}$
(c) NH_{3} changes to $\mathrm{NH}_{4}{ }^{+}$
(d) In all cases
35. In the thiocyanate ion, SCN^{-}three resonating structure are possible with the electron-dot method as shown in figure :
$: S=C=\stackrel{1-}{N}$:
(x)
$\stackrel{-}{-1}-\mathrm{C} \equiv \mathrm{N}$:
(y)
${ }^{1+} \equiv \mathrm{C}-{ }^{2-}$
(z)

The decreasing order of $\%$ contribution in resonance hybrid is :
(a) $y>x>z$
(b) $y>z>x$
(c) $z>x>y$
(d) Cannot predicted.
36. The correct order of $\mathrm{C}-\mathrm{N}$ bond length in the given compounds is:
$P: \mathrm{CH}_{3} \mathrm{CN} \quad \mathrm{Q}: \mathrm{HNCO}$
R: $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
(a) $P>Q>R$
(b) $P=Q=R$
(c) R $>$ Q $>P$
(d) $R>P>Q$
37. An ionic bond $A^{+} B^{-}$is most likely to be formed when :
(a) The ionization energy of A is high and the electron affinity of B is low
(b) The ionization energy of A is low and the electron affinity of B is high
(c) The ionization energy of A and the electron affinity of B is high
(d) The ionization energy of A and the electron affinity of B is low
38. Which of the following contains both electrovalent and covalent bonds ?
(a) MgCl_{2}
(b) $\mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{NH}_{4} \mathrm{Cl}$
(d) none
39. Which type of hybridisation of each carbon have in the following compounds?
(a) $\mathrm{CH}_{3}-\mathrm{Cl}$
(b) $\underset{\substack{\text { ll } \\ \mathrm{O}}}{\mathrm{CH}}$
(c) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{N}$

(a) (b) \quad (c)
(a) $\quad s p^{3} \quad s p^{3} \& s p^{2} s p^{3} \quad \& s p^{2}$
(b) $\quad s p^{2} \quad s p^{3} \& s p s p^{3} \quad \& s p$ $s p^{2}$
(c) $\quad s p^{3} \quad s p^{3} \& s p^{2} s p^{3} \quad \& s p \quad s p^{2}$
(d) $\quad s p^{2} \quad s p^{3} \& s p s p^{3} \quad \& s p^{2}$
40. Identify the 3° amines?
(a)

(b)

(c)

(d)

(a) 2-Methyl-3-ethyl-1-pentene
(b) 3-Ethyl-4-methyl-4-pentene
(c) 3-Ethyl-2-methyl-1-pentene
(d) 3-Methyl-2-ethyl-1-pentene
42. IUPAC name for
 is:
(a) (1-Methylpropyl)cyclobutane
(b) 2-(n-butyl)cyclobutane
(c) 2-Cyclobutylbutane
(d) 1-Cyclobutylbutane
43. The correct IUPAC name of the compound

(a) 6-Ethyl-1-methyl-4-oxohept-6-ene-1-sulphonic acid
(b) 7-Ethyl-5-oxooct-7-ene-2-sulphonic acid
(c) 2-Ethyl-7-sulphooct-1-ene-4-one
(d)7-Methylene-5-oxononane-2-sulphonic acid
44. The IUPAC name of the

(a) 3-Aminohept-5-enoic acid
(b) 5-Aminohex-2-enecarboxylic acid
(c) 3-Aminohept-4-enoic acid
(d) 5-Aminohept-2-enoic acid
45. IUPAC name of the compound

(a) N-Cyclopentylamide
(b) N-Cyclopentylmethanamide
(c) Cyclopentanemethanamide
(d) N-Aminocyclopentylmethanal
46. IUPAC name of the

(a) Methyldibenzene
(b) Isophenyl methane
(c) Dimethylbenzene
(d) Diphenyl methane
47. The IUPAC name of

(a) 3,4-Dihydroxybenzenecarboxylic acid
(b) 1,2-Dihydroxybenzoic acid
(c) 4-Carboxy-2-hydroxy phenol
(d) 4-Carboxybenzene-1,2-diol
48. Compounds with same molecular formula but different structural formulae are called :
(a) Isomers
(b) Isotopes
(c) Isobars
(d) Isoelectric
49. Which of the following is a pair of metamers ?
(a)

(b)

(c)

(d)

50. A position isomer of 2-pentanone is :
(a) 3-Pentanone
(b) 3-Methyl-2-butanone
(c) 1-Pentanal
(d) 2,2-Dimethylpropanal
51. Identify the relationship among the followings :

$\begin{array}{ll}\text { (a) Chain Isomers } & \text { (b) Functional isomers }\end{array}$
(c) Metamers
(d) Position Isomers
52. $\mathrm{BrCH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{O}$ and $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{\mathrm{C}}{\mathrm{C}} \mathrm{l}=\mathrm{O}$ are
(a) Functional isomers
(b) Position isomers
(c) Chain isomers
(d) Metamers
53. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ can be manufactured by Solvey's process but $\mathrm{K}_{2} \mathrm{CO}_{3}$ cannot be prepared because
(a) $\mathrm{K}_{2} \mathrm{CO}_{3}$ is more soluble
(b) $\mathrm{K}_{2} \mathrm{CO}_{3}$ is less soluble
(c) KHCO_{3} is more soluble than NaHCO_{3}
(d) KHCO_{3} is less soluble than NaHCO_{3}
54. Which one is used as a bye-product in Serpeck's process
(a) NH_{3}
(b) CO_{2}
(c) N_{2}
(d) PH_{3}
55. Chemical formula for the phosphorus molecule is
(a) P
(b) P_{4}
(c) P_{2}
(d) P_{5}
56. Among the following nitrates, Lead nitrate, Silver nitrate and Ammonium nitrate; the one that decomposes without leaving any solid residue is
(a) Lead nitrate
(b) Ammonium nitrate
(c) Silver nitrate
(d) Sodium nitrate
57. Nitrogen dioxide cannot be obtained by heating
(a) KNO_{3}
(b) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
(c) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
(d) AgNO_{3}
58. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ on heating liberates a gas. The same gas will be obtained by
(a) Heating $\mathrm{NH}_{4} \mathrm{NO}_{2}$
(b) Heating $\mathrm{NH}_{4} \mathrm{NO}_{3}$
(c) Treating $\mathrm{H}_{2} \mathrm{O}_{2}$ with NaNO_{2}
(d) Treating $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ with $\mathrm{H}_{2} \mathrm{O}$
59. Most acidic oxide is
(a) $\mathrm{Na}_{2} \mathrm{O}$
(b) ZnO
(c) MgO
(d) $\mathrm{P}_{2} \mathrm{O}_{5}$
60. Halogen acid used in the preparation of aqua regia is
(a) HBr
(b) HI
(c) HCl
(d) HF
61. Hydrogen iodide cannot be prepared by the action of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ on potassium iodide because
(a) HI is stronger than $\mathrm{H}_{2} \mathrm{SO}_{4}$
(b) HI is more volatile than $\mathrm{H}_{2} \mathrm{SO}_{4}$
(c) $\mathrm{H}_{2} \mathrm{SO}_{4}$ is an oxidising agent
(d) $\mathrm{H}_{2} \mathrm{SO}_{4}$ forms complex
62. Whose bond energy is maximum
(a) F_{2}
(b) Cl_{2}
(c) $B r_{2}$
(d) I_{2}
63. A body of mass $m \mathrm{~kg}$ is lifted by a man to a height of one metre in 30 sec . Another man lifts the same mass to the same height in 60 sec . The work done by them are in the ratio
(a) $1: 2$
(b) $1: 1$
(c) $2: 1$
(d) $4: 1$
64. A force of 5 N , making an angle θ with the horizontal, acting on an object displaces it by 0.4 m along the horizontal direction. If the object gains kinetic energy of 1 J , the horizontal component of the force is
(a) 1.5 N
(b) 2.5 N
(c) 3.5 N
(d) 4.5 N
65. If force and displacement of particle in direction of force are doubled. Work would be
(a) Double
(b) 4 times
(c) Half
(d) $\frac{1}{4}$ times
66. A sphere of mass m, moving with velocity V, enters a hanging bag of sand and stops. If the mass of the bag is M and it is raised by height h, then the velocity of the sphere was
(a) $\frac{M+m}{m} \sqrt{2 g h}$
(b) $\frac{M}{m} \sqrt{2 g h}$
(c) $\frac{m}{M+m} \sqrt{2 g h}$
(d) $\frac{m}{M} \sqrt{2 g h}$
67. What average horsepower is developed by an 80 kg man while climbing in 10 s a flight of stairs that rises 6 m vertically
(a) 0.63 HP
(b) 1.26 HP
(c) 1.8 HP
(d) 2.1 HP
68. An engine pumps up 100 kg of water through a height of 10 m in 5 s . Given that the efficiency of the engine is 60%. If $g=10 \mathrm{~ms}^{-2}$, the power of the engine is
(a) 3.3 kW
(b) 0.33 kW
(c) 0.033 kW
(d) 33 kW
69. A man does a given amount of work in 10 sec . Another man does the same amount of work in 20 sec . The ratio of the output power of first man to the second man is
(a) 1
(b) $1 / 2$
(c) $2 / 1$
(d) None of these
70. Two point masses m and M are separated by a distance L. The distance of the centre of mass of the system from m is
(a) $L(m / M)$
(b) $L(M / m)$
(c) $L\left(\frac{M}{m+M}\right)$
(d) $L\left(\frac{m}{m+M}\right)$
71. A wheel is rotating at 900 r.p.m. about its axis. When the power is cutoff, it comes to rest in 1 minute. The angular retardation in radian $/ s^{2}$ is
(a) $\pi / 2$
(b) $\pi / 4$
(c) $\pi / 6$
(d) $\pi / 8$
72. In a bicycle the radius of rear wheel is twice the radius of front wheel. If r_{F} and r_{r} are the radii, v_{F} and v_{r} are speeds of top most points of wheel, then
(a) $v_{r}=2 v_{F}$
(b) $v_{F}=2 v_{r}$
(c) $v_{\mathrm{F}}=v_{\mathrm{r}}$
(d) $v_{F}>v_{r}$
73. A body is rolling without slipping on a horizontal plane. If the rotational energy of the body is 40% of the total kinetic energy, then the body might be
(a) Cylinder
(b) Hollow sphere
(c) Solid cylinder
(d) Ring
74. A solid sphere, a solid cylinder, a disc and a ring are rolling down an inclined plane. Which of these bodies will reach the bottom simultaneously
(a) Solid sphere and solid cylinder
(b) Solid cylinder and disc
(c) Disc and ring
(d) Solid sphere and ring
75. A solid cylinder (i) rolls down (ii) slides down an inclined plane. The ratio of the accelerations in these conditions is
(a) $3: 2$
(b) $2: 3$
(c) $\sqrt{3}: \sqrt{2}$
(d) $\sqrt{2}: \sqrt{3}$
76. The acceleration of a body rolling down on an inclined plane does not depend upon
(a) Angle of inclination of the plane
(b) Length of plane
(c) Acceleration due to gravity of earth
(d) Radius of gyration of body
77. Two particles of equal mass go round a circle of radius R under the action of their mutual gravitational attraction. The speed of each particle is
(a) $v=\frac{1}{2 R} \sqrt{\frac{1}{G m}}$
(b) $v=\sqrt{\frac{G m}{2 R}}$
(c) $v=\frac{1}{2} \sqrt{\frac{G m}{R}}$
(d) $v=\sqrt{\frac{4 G m}{R}}$
78. The mass of the moon is $7.34 \times 10^{22} \mathrm{~kg}$ and the radius is $1.74 \times 10^{6} \mathrm{~m}$. The value of gravitation force will be
(a) $1.45 \mathrm{~N} / \mathrm{kg}$
(b) $1.55 \mathrm{~N} / \mathrm{kg}$
(c) $1.75 \mathrm{~N} / \mathrm{kg}$
(d) $1.62 \mathrm{~N} / \mathrm{kg}$
79. Two planets have the same average density but their radii are R_{1} and R_{2}. If acceleration due to gravity on these planets be g_{1} and g_{2} respectively, then
(a) $\frac{g_{1}}{g_{2}}=\frac{R_{1}}{R_{2}}$
(b) $\frac{g_{1}}{g_{2}}=\frac{R_{2}}{R_{1}}$
(c) $\frac{g_{1}}{g_{2}}=\frac{R_{1}^{2}}{R_{2}^{2}}$
(d) $\frac{g_{1}}{g_{2}}=\frac{R_{1}^{3}}{R_{2}^{3}}$
80. If the earth stops rotating, the value of ' g ' at the equator will
(a) Increase (b) Remain same
(c) Decrease
(d) None of the above
81. The radii of two planets are respectively R_{1} and R_{2} and their densities are respectively ρ_{1} and ρ_{2}. The ratio of the accelerations due to gravity at their surfaces is
(a) $g_{1}: g_{2}=\frac{\rho_{1}}{R_{1}^{2}}: \frac{\rho_{2}}{R_{2}^{2}}$
(b) $g_{1}: g_{2}=R_{1} R_{2}: \rho_{1} \rho_{2}$
(c) $g_{1}: g_{2}=R_{1} \rho_{2}: R_{2} \rho_{1}$
(d) $g_{1}: g_{2}=R_{1} \rho_{1}: R_{2} \rho_{2}$
82. Two planets move around the sun. The periodic times and the mean radii of the orbits are T_{1}, T_{2} and r_{1}, r_{2} respectively. The ratio T_{1} / T_{2} is equal to
(a) $\left(r_{1} / r_{2}\right)^{1 / 2}$
(b) r_{1} / r_{2}
(c) $\left(r_{1} / r_{2}\right)^{2}$
(d) $\left(r_{1} / r_{2}\right)^{3 / 2}$
83. A satellite A of mass m is at a distance of r from the centre of the earth. Another satellite B of mass $2 m$ is at a distance of $2 r$ from the earth's centre. Their time periods are in the ratio of
(a) $1: 2$
(b) $1: 16$
(c) $1: 32$
(d) $1: 2 \sqrt{2}$
84. Planetary system in the solar system describes
(a) Conservation of energy
(b) Conservation of linear momentum
(c) Conservation of angular momentum
(d) None of these
85. In the solar system, which is conserved
(a) Total Energy
(b) K.E.
(c) Angular Velocity
(d) Linear Momentum
86. A body revolved around the sun 27 times faster than the earth what is the ratio of their radii
(a) $1 / 3$
(b) $1 / 9$
(c) $1 / 27$
(d) $1 / 4$
87. Which of the following astronomer first proposed that sun is static and earth rounds sun
(a) Copernicus
(b) Kepler
(c) Galileo
(d) None
88. The orbital angular momentum of a satellite revolving at a distance r from the centre is L. If the distance is increased to $16 r$, then the new angular momentum will be
(a) 16 L
(b) 64 L
(c) $\frac{L}{4}$
(d) $4 L$
89. Suppose the law of gravitational attraction suddenly changes and becomes an inverse cube law i.e. $F \propto 1 / r^{3}$, but still remaining a central force. Then
(a) Keplers law of areas still holds
(b) Keplers law of period still holds
(c) Keplers law of areas and period still hold
(d) Neither the law of areas, nor the law of period still holds
90. If orbital velocity of planet is given by $v=G^{a} M^{b} R^{c}$, then
(a) $a=1 / 3, b=1 / 3, c=-1 / 3$
(b) $a=1 / 2, b=1 / 2, c=-1 / 2$
(c) $a=1 / 2, b=-1 / 2, c=1 / 2$
(d) $a=1 / 2, b=-1 / 2, c=-1 / 2$

