Subject:MATHEMATICS

 Test Topics- log,mod,inequalityQ. 1 If $3<|x|<6$, then x belongs to :
(A) $(-6,-3) \cup(3,6)$
(B) $(-6,6)$
(C) $(-3,-3) \cup(3,6)$
(D) None of these
Q. 2 If $|x|<x$, then :
(A) x is a positive real number
(B) x is a non-negative real number
(C) there is no x satisfying this inequality
(D) x is a negative real number
Q. $3\left|x+\frac{2}{x}\right|<3$, then x belongs to :
(A) $(-2,-1) \cup(1,2)$
(B) $(-\infty,-2) \cup(-1,1) \cup(2, \infty)$
(C) $(-2,2)$
(D) $(-3,3)$
Q. $4\left(\mathrm{x}^{2}+1\right)(\mathrm{x}-1)(\mathrm{x}-2)<0$, then :
(A) $\mathrm{x}<1$ or $\mathrm{x}>2$
(B) $x \in(1,2)$
(C) $-1<x<2$
(D) None of these
Q. $5\left(x^{2}+1\right)(x-2)^{2}(x-3)<0$, then x belongs to :
(A) $(-x, 2) \cup(2,3)$
(B) $(-\infty, 3)$
(C) $(2,3)$
(D) None of these
Q. 6 The set of values of x satisfying the inequalities $(x-1)(x-2)<0$ and ($3 x-7$) $(2 x-3)>0$ is :
(A) $(1,2)$
(B) $\left(2, \frac{7}{3}\right)$
(C) $\left(1, \frac{7}{3}\right)$
(D) $\left(1, \frac{3}{2}\right)$
Q. 7 The values of x satisfying $|x-4|+|x-9|=5$, is :
(A) $x=4,9$
(B) $\quad 4 \leq x \leq 9$
(C) $x \leq 4$ or $x \geq 9$
(D) None of these
Q. 8 The number $\log _{2} 7$ is
(a) An integer
(b)A rational number
(c) An irrational number
(d) A prime number
Q. 9 If $\frac{2 x}{2 x^{2}+5 x+2}>\frac{1}{x+1}$, then
(a) $-2>x>-1$
(b) $-2 \geq x \geq-1$
(c) $-2<x<-1$
(d) $-2<x \leq-1$
Q. 10 If for real values of $x, x^{2}-3 x+2>0$ and $x^{2}-3 x-4 \leq 0$, then
(a) $-1 \leq x<1$
(b) $-1 \leq x<4$
(c) $-1 \leq x<1$ or $2<x \leq 4$
(d) $2<x \leq 4$
Q. 11 The number of integral solution of $\frac{x+1}{x^{2}+2}>\frac{1}{4}$ is
(a) 1
(b) 2
(c) 5
(d) None of these
Q. 12 The set of all real numbers x for which $x^{2}-|x+2|+x>0$, is
(a) $(-\infty,-2) \cup(2, \infty)$
(b) $(-\infty,-\sqrt{2}) \cup(\sqrt{2}, \infty)$
(c) $(-\infty,-1) \cup(1, \infty)$
(d) $(\sqrt{2}, \infty)$

Q13 The solution set of $\left|\frac{x+1}{x}\right|+|x+1|=\frac{(x+1)^{2}}{|x|}$ is
(a) $\{x \mid x \geq 0\}$
(b) $\{x \mid x>0\} \cup\{-1\}$
(c) $\{-1,1\}$
(d) $\{x \mid x \geq 1$ or $x \leq-1\}$
Q. 14
$\frac{1}{1+\log _{b} a+\log _{b} c}+\frac{1}{1+\log _{c} a+\log _{c} b}+\frac{1}{1+\log _{a} b+\log _{a} c}$ is equal to :
(A) abc
(B) $\frac{1}{a b c}$
(C) 0
(D) 1
Q. 15 If $4^{\log _{9} 3}+9^{\log _{2} 4}=10^{\log _{x} 83},(x \in r)$, then x is :
(A) 4
(B) 9
(C) 10
(D) None of these
Q. 16 Least value of $2 \log _{10} x-\log _{x}(0.01)$ for $x>1$ is :
(A) 1
(B) 2
(C) 4
(D) 6
Q. 17 The set of values of x satisfying the inequalities $(x-1)(x-2)<0$ and $(3 x-7)$ $(2 x-3)>0$ is :
(A) $(1,2)$
(B) $(1,3 \backslash 2)$
(C) $(2,7 \backslash 3)$
(D) $(3 \backslash 2,2)$
Q. $18(\mathrm{x}-1)\left(\mathrm{x}^{2}-5 \mathrm{x}+7\right)<(\mathrm{x}-1)$, then x belongs to :
(A) $(1,2) \cup(3, \infty)$
(B) $(2,3)$
(C) $(-\infty, 1) \cup(2,3)$
(D) None of these
Q. 19 Solution of the equations $\log _{3}(x+y)$ and $x^{2}+y^{2}=65$ is :
(A) $\mathrm{x}=8, \mathrm{y}=1$
(B) $\mathrm{x}=1, \mathrm{y}=8$
(C) $\quad(x=8, y=1) ;(x=1, y=8)$
(D) None of the above
Q. 20 The number of real roots of the equation $x^{2}-3|x|+2=0$ is:
(A) 4
(B) 2
(C) 0
(D) None of these

