1. $\vec{a}, \vec{b}, \vec{c}$ are three coplanar vectors. Find the vector sum, $\vec{a}=4 \hat{i}-\hat{j}, \vec{b}=-3 \hat{i}+2 \hat{j}, \vec{c}=-3 \hat{j}$
(a) $\sqrt{ } 5,297^{\circ}$
(b) $\sqrt{5}, 63^{0}$
(c) $\sqrt{3}, 297^{0}$
$\sqrt{ } 3,63^{0}$
(d)
2. The resultant of two forces equal in magnitude is equal to either of two vectors in magnitude. Find the angle between the forces.
(a) 60°
(b) 45°
(c) 90°
(d) 120°
3. A man goes 100 m North then 100 m East and then 20 m North and then $100 \sqrt{2} \mathrm{~m}$ South West. Find the displacement.
(a) 20 m West
(b) 20 m East
(c) 20 m North
(d) 20 m South
4. If $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$ then angle between the vectors A and B is
(a) 0
(b) $\pi / 3$
(c) $\pi / 2$
(d) $\pi / 4$
5. A boat sails 2 km east, then 4 km northeast and then in an unknown direction. Final position of the boat is 5 km east from starting point. Unknown displacement is
(a) $2.8 \mathrm{~km}, 3^{\circ} 26^{\prime}$ with north towards east
(b) $3 \mathrm{~km} 2^{\circ} 26^{\prime}$ with east
(c) $3.5 \mathrm{kin}, 2^{\circ} 30^{\prime}$ with south towards west
(d) $1.81 \mathrm{~cm}, 2^{\circ} 36^{\prime}$ with north towards east.
6. Two vectors \vec{a} and \vec{b} lie in one plane. Vector \vec{c} lies in different plane, then $\vec{a}+\vec{b}+\vec{c}$
(a) May be zero
(b) Must be zero
(c) Must not be zero
(d) All of above are possible
7. If \vec{a} and \vec{b} are two unit vectors and $\vec{R}=\vec{a}+\vec{b}$ and also if $|\vec{R}|=R$, then -
(a) $R<0$
(b) $R>2$
(c) $0 \leq \mathrm{R} \leq 2$
(d) R
must be 2
8. For the vectors \vec{a} and \vec{b} shown in figure, $\vec{a}=\sqrt{3}$ $\hat{i}+\hat{j}$ and $|\vec{b}|=10$ units while $\theta=23 o$, then the value of $R=|\vec{a}+\vec{b}|$ is nearly -

(a)12
(b) 13
(c)14
(d) 15
9. The resultant of two vectors \vec{P} and \vec{Q} is \vec{R}. If the magnitude of \vec{Q} is doubled, the new resultant becomes perpendicular to \vec{P}, then the magnitude of \vec{R} is -
(a) $\frac{P^{2}-Q}{2 P Q}$
(b) $\frac{P+Q}{P-Q}$
(c) Q
(d) $\frac{P}{Q}$
10. The maximum and the minimum magnitudes of the resultant of two given vectors are 17 unit and 7 unit respectively. If these two vectors are at right angles to each other, the magnitude of their resultant is -
(a) 14
(b)16
(c) 18
(d) 13
11. Vector \vec{R} is the resultant of the vectors \vec{A} and \vec{B}. Ratio of minimum value of $|\vec{R}|$ and maximum value of $|\vec{R}|$ is $\frac{1}{4}$. Then $\frac{|\vec{A}|}{|\vec{B}|}$ may be -
(a) $\frac{4}{1}$
(b) $\frac{2}{1}$
(c) $\frac{3}{5}$
(d) $\frac{1}{4}$
12. The unit vector parallel to the resultant of the vectors
$\vec{A}=4 \hat{i}+3 \hat{j}+6 \hat{k}$ and $\vec{B}=-\hat{i}+3 \hat{j}-8 \hat{k}$ is -
(a) $\frac{1}{7}(3 \hat{i}+6 \hat{j}-2 \hat{k})$
(b) $\frac{1}{7}(3 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$
(c) $\frac{1}{49}(3 \hat{i}+6 \hat{j}+2 \hat{k})$
(d) $\frac{1}{49}(3 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})$
13. What is the numerical value of the vector $3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$?
(a) $3 \sqrt{2}$
(b) $5 \sqrt{2}$
(c) $7 \sqrt{2}$
(d) $9 \sqrt{2}$
14. Given : $\vec{A}=\hat{i}+2 \hat{j}-3 \hat{k}$. When a vector \vec{B} is added to \vec{A}, we get a unit vector along X-axis. Then, \vec{B} is-
(a) $-2 \hat{j}+3 \hat{k}$
(b) $-\hat{i}-2 \hat{j}$
(c) $-\hat{i}+3 \hat{k}$
(d)
$2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$
15. Given : $\vec{R}=\vec{A}+\vec{B}$ and $R=A=B$. The angle between \vec{A} and \vec{B} is-
(a) 60°
(b) 90°
(c) 120^{0}
(d) 180^{0}
16. A force vector applied on a mass is represented as $\overrightarrow{\mathrm{F}}=6 \hat{\mathrm{i}}-8 \hat{\mathrm{j}}+10 \hat{\mathrm{k}} \mathrm{N}$ and accelerates the mass at 1 m s^{-2}. The mass of the body is-
(a) 10 kg
(b) 20 kg
(c) $2 \sqrt{10} \mathrm{~kg}$
(d)
$10 \sqrt{2} \mathrm{~kg}$
17. The vector $5 \hat{i}+2 \hat{j}-\ell \hat{k}$ is perpendicular to the vector $3 \hat{i}+\hat{j}+2 \hat{k}$ for $\ell=$
(a) 1
(b) 4.7
(c) 6.3
8.5
(d)
18. The vector which must be added to the sum of the two vectors $\hat{i}+2 \hat{j}-\hat{k}$ and $\hat{i}-2 \hat{j}+2 \hat{k}$ to get a resultant of unit vector along z-axis is -
(a) $2 \hat{i}+\hat{j}$
(b) $-2 \hat{i}$
(c) $\hat{i}+\hat{j}+\hat{k}$
(d)
$\hat{i}-\hat{j}-\hat{k}$
19. Given : $\overrightarrow{\mathrm{A}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$. When a vector $\overrightarrow{\mathrm{B}}$ is added to \vec{A}, we get a unit vector along X-axis. Then, \vec{B} is-
(a) $-2 \hat{j}+3 \hat{k}$
(b) $-\hat{i}-2 \hat{j}$
(c) $-\hat{i}+3 \hat{k}$
(d)
$2 \hat{j}-3 \hat{k}$
20. A parallelogram has diagonals expressed as $\overrightarrow{\mathrm{A}}=5 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{B}}=3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{k}$. Area of parallelogram is

(a) $\sqrt{117}$ units
(b) $\sqrt{171}$ units
(c) $\sqrt{711}$ units
(d) $\sqrt{107}$ units
21. If \vec{a}_{1} and \vec{a}_{2} are two non collinear unit vectors and if $\left|\vec{a}_{1}+\vec{a}_{2}\right|=\sqrt{3}$, then the value of $\left(\vec{a}_{1}-\vec{a}_{2}\right)$. $\left(2 \overrightarrow{\mathrm{a}}_{1}+\overrightarrow{\mathrm{a}}_{2}\right)$ is -
(a) 2
(b) $\frac{3}{2}$
(c) $\frac{1}{2}$
(d) 1
22. The sum, difference and cross product of two vectors $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ are mutually perpendicular if :
(a) $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ are perpendicular to each other and | $\overrightarrow{\mathbf{A}}|=|\overrightarrow{\mathbf{B}}|$
(b) $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ are perpendicular to each other
(c) $\overrightarrow{\mathbf{A}}$ and $\overrightarrow{\mathbf{B}}$ are perpendicular but their magnitudes are arbitrary
(d) $|\overrightarrow{\mathbf{A}}|=|\overrightarrow{\mathbf{B}}|$ and their directions are arbitrary
23. If $\vec{A}=\hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{B}=3 \hat{i}+6 \hat{j}+2 \hat{k}$, then the vector in the direction of \vec{A} and having same magnitude as $|\vec{B}|$, is -
(a) $\frac{7}{3}(\hat{i}+2 \hat{j}+2 \hat{k})$
(b) $7(\hat{i}+2 \hat{j}+2 \hat{k})$
(c) $\frac{3}{7}(\hat{i}+2 \hat{j}+2 \hat{k})$
(d) $\frac{7}{9}(\hat{i}+2 \hat{j}+2 \hat{k})$
24. The angle between two vectors $(2 \hat{i}+3 \hat{j}+\hat{k})$ and $(-3 \hat{i}+6 \hat{k})$ is-
(a) 0^{0}
(b) 45^{0}
(c) 60°
(d) 90°
25. If a vector $(2 \hat{i}+3 \hat{j}+8 \hat{k})$ is perpendicular to the vector $-4 \hat{i}+4 \hat{j}+\alpha \hat{k}$, then the value of α is-
(a) -1
(b) $\frac{1}{2}$
(c) $\frac{-1}{2}$
(d) 1
26. A vector \vec{F}_{1} is along the positive x-axis. If its vector product with another vector $\overrightarrow{F_{2}}$ is zero then $\overrightarrow{F_{2}}$ may be -
(a) $4 \hat{j}$
(b) $-(\hat{i}+\hat{j})$
(c) $(\hat{i}+\hat{k})$
(d)
$-4 \hat{i}$
27. Find out the unit vector perpendicular to both vectors
$\hat{i}-\hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$.
(a) $\hat{i}+\hat{j}$
(b) $\frac{-\hat{\mathrm{i}}+\hat{\mathrm{k}}}{\sqrt{2}}$
(c) $\hat{j}+\hat{k}$
(d) $\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}$
28. A vector \vec{P}_{1} is along the positive x-axis. If its vector product with another vector $\overrightarrow{\mathrm{P}}_{2}$ is zero, then $\overrightarrow{\mathrm{P}}_{2}$ could be-
(a) $4 \hat{\mathrm{j}}$
(b) $-4 \hat{\mathrm{i}}$
(c) $(\hat{j}+\hat{k})$
(d)
$-(\hat{i}+\hat{j})$
29. The adjacent sides of a parallelogram are represented by co-initial vectors $2 \hat{i}+3 \hat{j}$ and $\hat{i}+4 \hat{j}$. The area of the parallelogram is-
(a) 5 units along z-axis
(b) 5 units in $x-y$ plane
(c) 3 units in $x-z$ plane
(d) 3 units in $y-z$ plane
30. A vector \vec{A} of magnitude $5 \sqrt{3}$ units, another vector \vec{B} of magnitude 10 units are inclined to each other at an angle of 30 . The magnitude of the vector product of the two vectors is -
(a) 1 units
(b) $5 \sqrt{3}$ units
(c) 75 units
(d) $25 \sqrt{3}$ units
