1.	$\vec{a}, \vec{b}, \vec{c}$ are three coplanar vectors. Find the vector		(a)12	(b)13	(c)14	(d)15
	sum, $a = 41 - 3, b = -31 + 23, c = -33$ (a) $\sqrt{5}$ 297° (b) $\sqrt{5}$ 63° (c) $\sqrt{3}$ 297° (d)	9.	The result	ant of two v	vectors $\stackrel{\rightarrow}{P}$ and	$\stackrel{\rightarrow}{Q}$ is $\stackrel{\rightarrow}{R}$. If the
	$\sqrt{3}, 63^{\circ}$		magnitude	e of \overrightarrow{Q} is d	oubled, the	new resultant
2.	The resultant of two forces equal in magnitude is		becomes perpendicular to $\stackrel{\rightarrow}{P}$, then the magnitude			
	equal to either of two vectors in magnitude. Find		of $\stackrel{\rightarrow}{R}$ is -			
	the angle between the forces. (a) 60° (b) 45° (c) 90° (d) 120°		(a) $\frac{P^2 - Q}{2PQ}$	(b)	$\frac{P+Q}{P-Q} \qquad (c) \ C$	Q (d) $\frac{P}{Q}$
3.	A man goes 100 m North then 100 m East and then 20 m North and then $100\sqrt{2}$ m South West. Find the displacement. (a) 20 m West (b) 20 m East	10.	The maxin the resulta 7 unit res right angle resultant is	num and th ant of two g pectively. I es to each o s -	ne minimum r iven vectors a f these two v ther, the mag	magnitudes of re 17 unit and vectors are at nitude of their
	(c) 20 m North (d) 20 m South	EKI	(a) 14	(b)16	(c)18	(d)13
Л	If $ \vec{A} \vec{R} = \vec{A} \vec{R} $ then angle between the	11.	Vector $\stackrel{\rightarrow}{R}$ is	the result	ant of the vec	tors $\stackrel{\rightarrow}{A}$ and $\stackrel{\rightarrow}{B}$.
ч.	vectors A and B is		Ratio of n	ninimum va	lue of $ \vec{R} $ a	and maximum
	(a) 0 (b) $\pi/3$ (c) $\pi/2$ (d) $\pi/4$	FT		JION1 Th	$\overrightarrow{ A }$ may be	0
5.	A boat sails 2 km east, then 4km northeast and 5	OTHER	CBSE, ICSE,	UP Board 4		
	then in an unknown direction. Final position of		(a) <u>4</u>	(b) $\frac{2}{-}$	(c) $\frac{3}{2}$	(d) $\frac{1}{2}$
	Unknown di <mark>splace</mark> ment is		1	1	5	4
	(a) 2.8 km, 3°26' with north towards east	12.	The unit	vector para	llel to the re	sultant of the
	(b) 3km 2°2 <mark>6' wit</mark> h east		vectors	→		
	(c) 3.5 kin, 2°30' with south towards west		A = 4i + 3j	+6k and B =	= -i + 3j - 8k is	-
	(d) 1.81cm, 2°36' with north towards east.	e wa	(a) $\frac{1}{7}(3\hat{i}+6)$	ĵ-€2 k)⊖SS	(b) $\frac{1}{7}(3\hat{i})$	$+6\hat{j}+2\hat{k})$
	\rightarrow		. 1 ^	^ ^	0.51	~ ^ ^
6.	Two vectors a and b lie in one plane. Vector c $\rightarrow \rightarrow \rightarrow \rightarrow$		(c) $\frac{1}{49}$ (3i +	6j+2k)	(d) $\frac{1}{49}$ (3	i+6j-2k)
	lies in different plane, then $a + b + c$ (a) May be zero (b) Must be zero	13.	What is	the nume	rical value o	f the vector
	(c) Must not be zero	r orb	$3\hat{i}+4\hat{j}+5\hat{k}$?		
	are possible	5-010	(a) 3√2	(b) 5√2	(c)7√2	(d) $9\sqrt{2}$
		14.	Given : \vec{A} =	$\hat{i} + 2\hat{j} - 3\hat{k}$.	When a vector	\vec{B} is added to
7.	If a and b are two unit vectors and $R = a + b$		$ec{A}$, we get	a unit vecto	r along X-axis. 1	Γhen, B⊂ is—
	and also if $ \mathbf{R} = \mathbf{R}$, then -		$(a) - 2\hat{j} + 3\hat{k}$	(b) – i	$-2\hat{j}$ (c) $-\hat{i}$	+3k̂ (d)
	(a) $R < 0$ (b) $R > 2$ (c) $0 \le R \le 2$ (d) R must be 2		$2\hat{j}-3\hat{k}$			
		15.	Given : R =	$\vec{A} + \vec{B}$ and F	R = A = B. The a	angle between
8.	For the vectors \vec{a} and \vec{b} shown in figure, $\vec{a} = \sqrt{3}$		\vec{A} and \vec{B}	is–		
	$\hat{i} + \hat{j}$ and $ \stackrel{\rightarrow}{b} $ = 10 units while θ = 23°, then the		(a) 60^0	(b) 90^0	(c) 120^{0}	(d) 180^{0}
	value of R = $ \stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b} $ is nearly –	16. A force vector applied on a mass is represented as				
	y \vec{f}		$\vec{F} = 6\hat{i} - 8\hat{j} + 10\hat{k}$ N and accelerates the mass at 1 m			
			s . The ma	ass of the bo (b) 20 kg	bay is – (c) $2\sqrt{10}$ kg	(d)
	$O \xrightarrow{f} X$		$10\sqrt{2}$ kg	(~, _ ~ "6	(0) 2 VIONE	(~)

17. The vector $5\hat{i} + 2\hat{j} - \ell \hat{k}$ is perpendicular to the vector $3\hat{i} + \hat{j} + 2\hat{k}$ for $\ell =$ (a) 1 (b) 4.7 (c) 6.3 (d) 8.5

- **18.** The vector which must be added to the sum of the two vectors $\hat{i}+2\hat{j}-\hat{k}$ and $\hat{i}-2\hat{j}+2\hat{k}$ to get a resultant of unit vector along z-axis is (a) $2\hat{i}+\hat{j}$ (b) $-2\hat{i}$ (c) $\hat{i}+\hat{j}+\hat{k}$ (d)
 - $\hat{i} \hat{j} \hat{k}$
- **19.** Given $: \vec{A} = \hat{i} + 2\hat{j} 3\hat{k}$. When a vector \vec{B} is added to \vec{A} , we get a unit vector along X-axis. Then, \vec{B} is- $(a) - 2\hat{j} + 3\hat{k}$ (b) $-\hat{i} - 2\hat{j}$ (c) $-\hat{i} + 3\hat{k}$ (d)
- **20.** A parallelogram has diagonals expressed as $\vec{A} = 5\hat{i} 4\hat{j} + 3\hat{k}$ and $\vec{B} = 3\hat{i} + 2\hat{j} \hat{k}$. Area of parallelogram is

(a) $\sqrt{117}$ units

(c) $\sqrt{711}$ units

21. If \vec{a}_1 and \vec{a}_2 are two non collinear unit vectors and if $|\vec{a}_1 + \vec{a}_2| = \sqrt{3}$, then the value of $(\vec{a}_1 - \vec{a}_2)$. $(2\vec{a}_1 + \vec{a}_2)$ is – (a) 2 (b) $\frac{3}{2}$ (c) $\frac{1}{2}$ (d) 1

(b) $\sqrt{171}$ units

(d) $\sqrt{107}$ units

- **22.** The sum, difference and cross product of two vectors \vec{A} and \vec{B} are mutually perpendicular if : (a) \vec{A} and \vec{B} are perpendicular to each other and |
 - $\vec{\mathbf{A}} = |\vec{\mathbf{B}}|$

(b) \overrightarrow{A} and \overrightarrow{B} are perpendicular to each other

(c) \overrightarrow{A} and \overrightarrow{B} are perpendicular but their magnitudes are arbitrary

- (d) $|\stackrel{\rightarrow}{A}|$ = $|\stackrel{\rightarrow}{B}|$ and their directions are arbitrary
- **23.** If $\vec{A} = \hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{B} = 3\hat{i} + 6\hat{j} + 2\hat{k}$, then the vector in the direction of \vec{A} and having same magnitude as $|\vec{B}|$, is -

(a)
$$\frac{7}{3}(\hat{i}+2\hat{j}+2\hat{k})$$
 (b) $7(\hat{i}+2\hat{j}+2\hat{k})$

(c) $\frac{3}{7}(\hat{i})$

$$+2\hat{j}+2\hat{k})$$
 (d) $\frac{7}{9}(\hat{i}+2\hat{j}+2\hat{k})$

- **24.** The angle between two vectors $(2\hat{i}+3\hat{j}+\hat{k})$ and $(-3\hat{i}+6\hat{k})$ is-(a) 0^{0} (b) 45^{0} (c) 60^{0} (d) 90^{0}
- **25.** If a vector $(2\hat{i}+3\hat{j}+8\hat{k})$ is perpendicular to the vector $-4\hat{i}+4\hat{j}+\alpha\hat{k}$, then the value of α is-

(a) -1 (b) $\frac{1}{2}$ (c) $\frac{-1}{2}$ (d) 1

26. A vector $\vec{F_1}$ is along the positive x-axis. If its vector product with another vector $\vec{F_2}$ is zero then $\vec{F_2}$ may be -

(a) $4\hat{j}$ (b) $-(\hat{i} + \hat{j})$ (c) $(\hat{i} + \hat{k})$ (d) - $4\hat{i}_{\text{RCC}}$ (cc) (1000 GeV)

27. Find out the unit vector perpendicular to both vectors

$$\hat{i} - \hat{j} + \hat{k}$$
 and $\hat{i} + \hat{j} + \hat{k}$.

(a)
$$\hat{i} + \hat{j}$$
 (b) $\frac{-\hat{i} + \hat{k}}{\sqrt{2}}$ (c) $\hat{j} + \hat{k}$ (d) $\frac{\hat{i} + \hat{j}}{\sqrt{2}}$

28. A vector \vec{P}_1 is along the positive x-axis. If its vector product with another vector \vec{P}_2 is zero, then \vec{P}_2 could be-

(a) $4\hat{j}$ (b) $-4\hat{i}$ (c) $(\hat{j}+\hat{k})$ (d)

29. The adjacent sides of a parallelogram are represented by co-initial vectors $2\hat{i} + 3\hat{j}$ and $\hat{i} + 4\hat{j}$. The area of the parallelogram is—

(a) 5 units along z-axis (b) 5 units in x-y plane

- (c) 3 units in x-z plane (d) 3 units in y-z plane
- **30.** A vector \vec{A} of magnitude $5\sqrt{3}$ units, another vector \vec{B} of magnitude 10 units are inclined to each other at an angle of 30°. The magnitude of the vector product of the two vectors is –

(a) 1 units (b) $5\sqrt{3}$ units

(c)75 units

 $-(\hat{i}+\hat{j})$

(d) $25\sqrt{3}$ units